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8. SRM drive 

8.1 Switched reluctance machine dynamic model 

Consider the machine shown schematically in Figure 8-1. 

 

Figure 8-1 Schematic representation of an SRM 6/4 

It is a machine with 6 stator poles and 4 rotor ones. In Figure 8-2 some typical quantities are shown: 

s stator pole angle 
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Figure 8-2: Typical quantities 

Suppose to linearize the machine and consider that all distances are obtained from the product of the 

angle corresponding to the average radius (and thus all the distances may be represented as angles 

except for a scaling factor equal to rm) the Figure 8-3 is obtained. 

 

Figure 8-3: Linear extension of the machine air gap (scale factor rm) 
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Figure 8-4: Field lines trajectories 

The qualitative trajectories of the flux lines is shown in Figure 8-4. Suppose to neglect the fringe 

effects: the magnetic induction associated to the lines that pass through the low air gap have high 

values, vice versa for the lines through a large air gap. The area crossed by the magnetic flux varies 

linearly with the mechanical angle m. 

 

Figure 8-5: Variation of the cross-section of the magnetic flux (in the case of s<r) 

 

Figure 8-6: Variation of the cross-section of the magnetic flux (in the case of s>r) 

Consider the case of s<r (usually, more common due to Ns>Nr). 

Having neglected the fringe effects, the cross-section of the flux between the position (1) and the 

position (2) remains constant. This means that the magnetic flux supported by the current is1 

remains constant. Also the flux linked with the winding s1 will be constant. The self-inductance, 

defined as the ratio between the flux linked with the winding and the current in it, will therefore be 

constant. This period will be then (valid for both s<r and r<s): |s-r|/2. 

For angles greater than |s-r|/2 the cross-section of the magnetic flux through the low air gap 

decreases linearly with the angle itself while the cross-section of the magnetic flux, that passes 

through the high air gap, grows linearly (3). This linear variation affects both the magnetic flux, the 

flux linkage and the self-inductance. This behavior lasts till configuration (4) where the stator pole 

abandons the rotor pole. The distance is s in the first case (s<r), while in the second case is to r: 

in general we can say that the length is the minimum of s and r [min(s,r)]. 

From the configuration (4) and as long as the stator pole is inside the space between two rotor poles 

(2/Nr-r) (5), the magnetic flux must pass through a high air gap, but the cross-section remains 
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constant. During this period ((2/Nr-r)-s=2/Nr-r-s), the inductance is constant and equal to its 

minimum value. 

Between the configuration (5) and (6) there is partial overlap between the stator pole and the rotor 

one (in a specular way to what occurred between the configuration (2) and (4)), so the inductance 

increases linearly; the distance is still min(s,r). 

From the configuration (6) and till the end of the period 2/Nr (which corresponds to the 

configuration (1)), the inductance is constant and equal to its maximum value; the distance is 

|s‒r|/2. 

The winding inductance profile is a function of the mechanical angle as shown in Figure 8-7. 

 

Figure 8-7: Self inductance profile as a function of the mechanical angle 

As regards the other windings, the corresponding self inductance will have a similar trend but 

phase-shifted by an angle equal to the period of the self inductance (2/Nr) divided by the number 

of windings (or phases q). The angle is, therefore, =2/(Nr q). In this case, q is equal to 3 and 

Nr=4, then the period (2/Nr) corresponds to 90° (mechanical angle) while the phase shift  is 30° 

(mechanical). 

 

Figure 8-8: Self-inductances profiles as a function of the mechanical angle 
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8.2 Torque value 

Consider to supply only one winding at once. 

Relative to phase s1, the relationship voltage/current and flux/current will be: 
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The energy balance gives: 
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To understand how the input power is divided into the different contributions (Joule losses, 

derivative of the internal magnetic energy of the system and mechanical power) it is better to 

consider the derivative of the energy stored in an inductor: 
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In the energy balance equation, the first term (Rsis1
2
) is related to the Joule losses, while the second 

one and an half of the third one represents the change of internal magnetic energy. One half of the 

third term, then, represents the mechanical power. 
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Called np the number of pole pairs for each phase, the mechanical speed in the mechanical world is: 
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It is clear that the torque is zero if there is no variation of the inductance and that the sign of the 

torque does not depend on the sign of the current but on the sign of the derivative of the inductance. 

This means that in the sector in which the inductance decreases, the machine is working as a 

generator and as a motor when it increases. If during the period (min(s, r)), in which the 

derivative of the inductance is constant (this derivative is then indicated by kc), the phase current is 

maintained constant (with a value equal to Id) through appropriate power converter, the torque Te 

remains constant and equal to: 
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In order to maintain constant the torque, throughout the period (2/Nr), it is necessary that before 

the end of the constant slope period of the phase inductance, a new phase in which the inductance 



begins to have a constant slope has to be ready. Since the phase shift between two phases is equal to 

=2/(Nr q), for a constant torque it must be ≤min(s,r). 

 

Figure 8-9: Current waveforms during operation as a motor 

8.3 Design region 

From the considerations made above, one can understand that there are limits on the values that s e 

r can assume. In particular, the fact that usually Ns is greater than Nr generally implies that s<r.  

In addition, the torque continuity is ensured by the condition min(s,r). There is another 

condition: the inductance has to be able to reach its minimum value. This may happen if the stator 

pole can stay inside the space between two rotor poles, i.e. if s2/Nr-r or better if 2/Nr-s-r0. 

If this condition is not satisfied, the period during which the derivative of the inductance is constant 

could be less than the theoretical min(s,r) and less than , with possible implications on the 

continuity of the torque.  

The application of these conditions determines, in the plane s-r, an area of possible values that 

may be assumed by s and r, in order to properly design the machine. 

 

Figure 8-10: Design region 

8.4 Control scheme 

Recall the torque expression: 
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and the voltage dynamic equation (referred to the first phase) 
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the control scheme of Figure 8-11is obtained (isx refers to the generic phase "x", one among the "q" 

ones).  

 

Figure 8-11: Power converter 

The system is not linear, for the presence of the "square root". The current regulator "sees" a 

transfer function whose pole is variable with the mechanical position m: 1/(Rs+sLs(m)). 

The control scheme is applied to each phase, for a period of =2/(Nr q), in phase with the self-

inductance (centered with respect to the period in which the derivative of the inductance is 

constant). Within the overall period (2) there are Nr sub-periods characterized by q sectors. In total 

the sectors are Nr•q (in the case of a machine 6/4 sectors with q=3 are 12). It needs, therefore, a 

position sensor in order to define the right phase to be supplied. 

 

8.5 Power converter 

Each phase of the machine must be able to be supplied independently of the other. Furthermore, 

since the torque does not depend on the sign of the current, the converter (a dc-dc converter) can 

operate only on two quadrants (positive current, positive and negative voltage). In the case of a 

machine with q = 3, a possible converter is represented in Figure 8-12, which has nothing to do with 

an inverter (there are 3 two quadrants dc-dc converter, one for each phase). 
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Figure 8-12: Power converter 

Closing both the high side static switch (eg. SH1) and the low side switch (SL1), the applied 

voltage is equal to Vdc. Closing only SH1, the current flowing in the inductance Ls1, cannot be 

instantly reduced to zero, but continues to flow in SH1 and the freewheeling diode DH1. The 

applied voltage is zero. The same voltage can be achieved by closing the only switch SL1: the 

current will flow in SL1 and DL1. By opening both switches, the current that was flowing in Ls1, 

begins to flow in the two freewheeling diodes DL1 and DH1. The voltage applied to the winding, in 

this case, is -Vdc. The current, clearly, is always positive. 

8.6 Operating regions 

The control logic presented above, which expects to impose a constant current, equal to Id, in each 

phase for a period , can operate only below a certain mechanical speed. In fact, the bemf E, with 

isx=Id, is proportional to the speed. 

mpcd nkIE   

As for all other machines, it is evident that the maximum value of voltage, that the power supply 

can provide, fixes limits on the maximum speed that can be achieved using this logic.  

In particular, said Vdmax the maximum power supply voltage (compatibly with the limitations due to 

the insulation of the windings of the machine and maintaining a certain margin for the dynamic 

control of the current), this maximum speed, also called base speed b, is reached when 

Vdmax=RsId+Idkcnpb i.e. b=(Vdmax-RsId)/(Idkcnp). For speed higher than the base speed a new 

strategy must be required. 

It will resume the dynamic equations of the stator winding 
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Figure 8-13: Current waveform when m<b 

If you would anticipate the change of the sector before the theoretical angle (0 di Figure 8-13 ),, 

where the derivative of the inductance is zero (1) (for example at the angle 2 di Figure 8-14), the 

term corresponding to the bemf would be zero (since the derivative is zero). 

 

Figure 8-14: Current waveform when m>b 

The forcing term of the dynamical system is Vdc (obtained by closing both SH1 and SL1), while the 

bemf E=0. This voltage would grow very fast the current till the angle 1. Since that time, the 

forcing term becomes Vdc-is1kcnpm, which, at that speed and power, is surely negative. Then the 

current decreases until reaching a steady state value, depending on the actual speed and such as to 

satisfy the following equality (the derivative of the current in steady state conditions is zero): 

Vdc=Rsisteady_state+isteady_statekcnpm, then isteady_state=Vdc/(Rs+kcnpm) Vdc/(kcnpm). This value could 

not be reached because it is necessary that, after an angle  starting from 2, a change of the sector 

has to take place and the control system has to stop supplying s1 and start to supply s2. The current 

of the phase s1 will go to zero quickly, forced by -Vdc-is1kcnpm (both switches SH1 and SL1 are 

opened). 

The angle 2 must not be too different from 1 as the current increases very fast (not being limited 

by any bemf). Even in this case the thermal requirements must be met, limiting the rms value of the 

current (in addition to limiting the maximum current value to keep safe the static switches).  
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The torque will be different from zero only in the section in which the derivative of the inductance 

is different from zero. It will be no longer constant, but it will allow the machine to reach very high 

speeds. 

 

Figure 8-15: Electromagnetic toque waveforms for m>b 

 

8.7 Example 

Vdc=200V, s=/6, r=/4, Lmin=1mH, Lmax= 10mH, Nr=4, Ns=6, np=1;  

so kc=(Lmax-Lmin)/s=0.0172 

 

f=50Hz, Iref=20A 
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f=100Hz, Iref=20A, I steady state 18.2A 
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