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7. Electromagnetic joint. Rotating magnetic field. Space-phasor 
theory 

7.1 Electromagnetic joint 

Consider an isotropic rotating machine, with one rotor winding. 

 

Figure 7-1 Isotropic rotor powered machine – concentrated windings 

In order to calculate the magnetic field H (and the flux density B), we need to apply the Ampere's 
Law, that is to perform the Line integral along a closed path, i.e. one among the flux lines of Figure 
7-1. 

Due to the refraction law, the tangent of the angle β between the normal to the separation surface 
and the direction of the output flux file is equal to the ratio between the permeabilities of the two 
materials (ferromagnetic material and air). But μfe=∞, so the flux line is perpendicular to the 
separation surface, (tgβ=μo/μfe≈0).  

Furthermore, the magnetic field H inside the ferromagnetic material may be considered equal to 
zero (μfe=∞). Thus, the line integral of H along a flux lines has only the contribution due to the two 
segments of flux line inside the airgap (NrIr is the magnetomotive force due to the rotor current): 
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Figure 7-2 Qualitative trend of the magnetomotive force along the air gap – concentrated windings 

In the air, the flux density B=μoH. Thus, the amplitude of the flux density is constant (for half 
period): 
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Figure 7-3 Qualitative trend of the flux density along the air gap – concentrated windings 

The first harmonic of a square wave has an amplitude of 4/π of the amplitude of the square wave. 
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Consider the Figure 7-4. 

 

Figure 7-4 Isotropic rotor powered machine – concentrated windings 

The flux linkage ψrr (flux linked with the rotor coil, due to the rotor current ir) is 
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Using the definition of the inductance: 
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Consider, now, the stator winding, with a generic mechanical position θm of the rotor respect the 
stator. 

 

Figure 7-5 Isotropic rotor powered machine – concentrated windings 

The flux linkage with the stator winding, due to the rotor current is: 
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In a similar manner 
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7.2 Number of poles 
Consider the structure of Figure 7-6. 
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Figure 7-6 Isotropic rotor powered machine, four poles – concentrated windings 

You find two North's and two South's. This machine has four poles. 

If you walk along the airgap, you find a period of the magnetic quantities equal to an half of the 
mechanical period (2π). This means that the frequency of the electrical quantities is two times the 
frequency of the mechanical ones. With np pole pairs, the ratio is np. In another way, the mechanical 
speed seen in the electrical world is np times the mechanical speed seen in the mechanical world. 

ωm=npΩm 

7.3 Distributed winding 
Consider now a machine with a rotor with distributed winding instead of a concentrated one. 

 

Figure 7-7: Flux density waveform along the air-gap in a distributed winding machine, due to stator 
current is1 

The distribution of turns in the slots produces an effect (winding factor) that is easy to analyze. 
Each coil produces a field represented by a space phasor. The vector sum of these fields provides 
the resulting field (see Figure 7-8) 
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Figure 7-8: Winding factor 

You need to introduce a coefficient kw: winding factor (kw <=1) 
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7.4 Torque expression 
With both stator and rotor current 
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The torque expression is 
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Applying the Superposition Principle: 
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The energy density is 1/2 BH. 

With μfe=∞, there is no energy stored in the ferromagnetic material. Therefore, the energy is stored 
only in the air-gap. 
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The first term does not depend on the mechanical position, so its partial derivative is zero. 

The second term has an average value which does not depend on the mechanical position and a 
cos[2(α+θm)] whose integral between 0 and 2π is equal to 0. The third one is: 
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The integral between 0 and 2π of the first part is equal to 0. Therefore the second part is the only 
different from zero, 
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Negative means an attractive torque: k ψssψrr sin(θm) (Electromagnetic Joint) 

7.5 Space phasor 

If we consider only the first harmonic and neglecting the highest harmonics, the situation in the air 
gap may be represented by a vector whose direction is along the North polar axis (Figure 7-9). 
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Figure 7-9: Mmf representation by means of a space phasor 

The space phasor (whose amplitude is a function of time) allows the knowledge of the value of the 
corresponding quantity at any location within the air-gap and at each instant. In fact, in order to 
know the value of the amplitude at a given point of the air gap, it is sufficient to project the phasor 
onto the required direction. It appears that )cos()(),(   tMtM  (Figure 7-10). 

 

Figure 7-10: Space phasor application 

All electrical quantities (voltages and currents) and magnetic quantities (mmf and fluxes) can be 
represented by space phasors, allowing for easy interpretation of electromagnetic phenomena. 

7.6 Three-phase machine and the rotating magnetic field 
Consider three windings, equal each other but with a displacement of 120°. Look at the Figure 7-11. 
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Figure 7-11: Three-phase machine 

Suppose to supply the machine by means of a symmetrical three-phase power supply. At steady-
state, the currents will assume the waveform of Figure 7-12: they have the same amplitude, same 
frequency and a displacement of 120° 

 

Figure 7-12: Three-phase currents 

At time t=0, the current is1 assumes its maximum value Imax while is2=is3=Imax cos(120°)=-0.5 Imax. 

Applying the superposition principle, the total flux are the sum of the three fluxes due to the three 
currents. Thus, the total flux has the direction of s1 and an amplitude equal to 3/2 of the flux ψs1 
(see Figure 7-13). 
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Figure 7-13: Total flux at t=0 

At t=t1, the current is2 assumes its maximum value Imax while is1=is3=-0.5 Imax. (Figure 7-14). Thus, 
the total flux has the direction of s2 and an amplitude equal to the previous one. 

 
Figure 7-14: Total flux at t=t1 

At t=t2, the current is3 assumes its maximum value Imax while is1=is2=-0.5 Imax. (Figure 7-15). Thus, 
the total flux has the direction of s3 and an amplitude equal to the previous one. 

It means that, at steady state, with a symmetrical power supply, the total flux assumes a constant 
value and it is moving at a constant speed: for a two poles machine, the speed of the rotating flux Ω 
is equal to the angular frequency ω of the electrical quantities (for np pole pairs, it results ω=np Ω). 
This effect is called "rotating field" (campo magnetico rotante) and is the milestone of the 
electromechanical conversion in ac machine. 
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Figure 7-15: Total flux at t=t2 

 

7.7 Space phasor algebra 
Consider the reference frame α,β of Figure 7-16 (α has the same direction of the magnetic axis s1) 

 
Figure 7-16: Reference frame, fixed with the stator windings 

Suppose to have three currents into the windings with a total effect represented by the space phasor 
I. 
The expression of the space phasor of the current as a function of the two currents iα and iβ is the 
following: 
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Conversely, knowing the space phasor, the value of winding current can be calculated simply 
projecting the space phasor along the direction of the corresponding magnetic axis; for example: 
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where Rα is defined as the projection of the phasor onto the magnetic axis of phase "α". 
The total effect achieved by using three windings, displaced by 120 electrical degrees in space, and 
three-phase currents, may be easily calculated by projection. The formula is as follows: 
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On the other hand, it is possible to calculate, knowing the space phasor and assuming that the sum 
of the phase currents is zero, the value of a phase current using the formula: 
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where Rs1 is defined as the projection of the phasor onto the magnetic axis of phase "s1". 
Traditionally (for this course), however, the space phasor is defined as follows: 
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so as to maintain the same expressions of power and energy both in the phase quantities and in the 
space phasors (Re means "real part of"). 
The space phasor, like all vectors, is completely defined by two variables: the amplitude and the 
argument (or phase angle) or by its components with respect to two orthogonal axes (reference 
frame). 

 

Figure 7-17: Different Reference frames 

The axes of a generic reference frame are commonly marked with "d" and "q" (where d is the real 
axis, while q represents the imaginary axis). If the reference frame is fixed with the stator (with the 
real axis aligned with s1), the two axes are called α and β (as we saw). Given iαβ as the phasor with 
respect to a reference frame "αβ", the corresponding phasor in a reference frame "dq" displaced by 
an angle  with respect "αβ " is: 
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The phasor is always the same, but it is "seen" from a different viewpoint. 
The operation of the derivative of a phasor leads to the following relationship: 
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7.7.1 Space phasor theory applied to an electrical machine 

Suppose to supply the machine by means of a symmetrical three-phase power supply. At steady-
state, the currents will assume the waveform of Figure 7-12. 
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Applying the Space Phasor formula [ )(
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the voltage space phasor has a constant amplitude, equal to the rms value of the line-line voltage 
and it is moving at a constant speed ω. 
The active power of the three-phase circuit is traditionally calculated by: P=3VphIphcos(φ) or 
P=sqrt(3)VllIphcos(φ), where Vph and Iph represent the phase voltage and phase current, φ is the 
displacement angle between them and Vll is the line to line voltage .  
Using the space phasor representation you have: P=VsIscos(φ) (without any square root of 3), 
where Vs and Is represent the voltage and current space phasors. 


