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3. Laws of electromagnetism, Magnetic circuits, Flux linkage 

An Electrical Machine is any reversible device able to convert electric energy into electric energy 
or into mechanical one (and vice-versa), based on the laws of electromagnetism. 

H magnetic field intensity (campo magnetico) [A/m] 

B magnetic flux density (induzione magnetica) [T] 

Relationship between these two quantities 

HB   

where μ is the permeability (permeabilità) of the material. 

For the air, the permeability is equal to the vacuum permeability μo= 4π∙×10-7 [H/m] 

The permeability of any material may be represented by a parameter (relative permeability μr) as the 
ratio between the permeability of the material (μ) and the permeability of the vacuum (μo): 

or   

For a ferromagnetic material, the permeability is not constant, but it is a non-linear function of the 
magnetic field intensity H, as in Figure 3-1. 

 

Figure 3-1: Initial magnetization curve (caratteristica di prima magnetizzazione) 

Figure 3-1 represents the magnetization starting from a demagnetized condition. The slope of the 
characteristic in the saturation condition is very near to the vacuum permeability. The return path is 
not the same as before, so, in a sinusoidal condition, the trajectory describes a closed loop. 
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Figure 3-2: Magnetic Hysteresis curve (ciclo di isteresi magnetica) 

Hc is the coercivity (coercitività o campo coercitivo) while Br is Remanence or Remanent magnetization 
or Residual magnetism (induzione residua). 

3.1 Ampere's Law 
The line integral of magnetic field intensity H around a closed contour C is equal to the total current 
passing through any surface S linking (bounded by) that contour. 
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Figure 3-3: Graphical representation of the Ampere's law 

The 
k

ki  is called Magnetomotive Force m.m.f. (M).  

A flux line is defined as a locus of point for which the direction of the magnetic field (in that point) 
is tangent to the flux line 
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For a single wire in the air, carrying a current I, the symmetry suggests that the flux lines are 
circumferences whose center is the wire itself. The magnetic field intensity H (the same for the flux 
density B) is constant along that circumference (of radius r) and tangent to it (the versus may be 
found using the right hand rule).  

 

Figure 3-4: Right-hand law (regola della mano destra) 

 

Therefore, the relationship may be reduced to: 
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If we have N wires with the same current I: 
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3.2 Gauss's Law and Magnetic flux definition 
The surface integral of the normal component of the magnetic flux density B over a closed surface 
S is zero (it means that the flux lines are closed); the surface integral of the normal component of 
the magnetic flux density B over a non-closed surface S is the magnetic flux φ [Wb]. 
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Figure 3-5: Graphical representation of the magnetic flux 

 

Consider a surface S and its contour C; you may define the flux tube as the region of space bounded 
by the flux lines linked to each point of the contour C. Figure 3-6 shows a segment of a flux tube. 

 

 

Figure 3-6: Flux tube segment 

Through any cross-section of a flux tube passes the same magnetic flux φ. That is why the flux 
density varies with the size of the cross-section. If the cross-section if the flux tube were constant, 
the flux density B is constant. The magnetic field intensity H is constant only if the material is the 
same everywhere. Otherwise, it is inverse proportional to the permeability of the material. 
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3.3 Magnetic circuit 
Consider the structure of Figure 3-7, made by ferromagnetic material with a constant permeability 
μfe. 

 

Figure 3-7: Ferromagnetic structure 

Suppose that permeability μ would be much higher than the vacuum permeability, such way the 
magnetic flux is bounded into the ferromagnetic material. 

Consider the line C, which length is "lfe". Suppose that the cross-section Afe is constant along the 
contour C. 

The surface integral of the flux density B across the area Afe (cross-section of the ferromagnetic 
structure), considering B constant in each point of the area (same assumption of the magnetic field 
intensity H) gives the expression of the magnetic flux. 
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If you apply the law of Ampere to the contour C we have: 
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where θfe is the reluctance of the magnetic path. 

The inverse of the reluctance θ is called "permeance" Λ. 
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Figure 3-8: Application of the Ampere's law 

 

Consider, now, a different configuration, in which the ferromagnetic structure is opened so to have 
an air-gap. 

 

Figure 3-9: Ferromagnetic structure with air-gap 

If the length of the air-gap is negligible respect to the dimensions of the ferromagnetic structure, the 
fringing effect (or side effect) (effetti di bordo) may be neglected, so to consider the cross-section Aδ 
of the magnetic flux into the air-gap equal to Afe. 

 

Figure 3-10: Ferromagnetic structure with air-gap (fringing effect) 

Due to the fact that the magnetic flux φ is the same everywhere (both in the ferromagnetic material 
and the airgap, φ= Bδ Aδ = Bfe Afe), neglecting the fringing effect (Aδ= Afe) means that the magnetic 
flux density B assumes the same value in the ferromagnetic material and in the air-gap (Bδ= Bfe).  
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Call lfe the length of the flux path inside the ferromagnetic material (a little bit lower than the above 
value, due to the size of the air-gap) and δ the size of the air-gap; the Ampere's law says: 
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where Bδ≈Bfe and Aδ≈Afe. 

Usually the ferromagnetic material has a permeability much higher than that of the air (the relative 
permeability of Iron is about 5000). It means that the magnetic field intensity H is much lower in 
the ferromagnetic material than in the air: Hδ = Bδ/μo, Hfe = Bfe /μfe<< Hδ. A usually adopted 
simplification, in presence of an air-gap, is to consider Hfe≈0. 

This means also that the reluctance of the magnetic path inside the ferromagnetic material is 
negligible respect to the reluctance of the air-gap. 
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In summary, the relationship between the magnetomotive force and the magnetic flux is the 
reluctance, in a similar way of the electric circuits, where the magnetomotive force is similar to a 
voltage generator, the magnetic flux to the current and the reluctance to the resistance. 

≈

 

Figure 3-11: Magnetic circuit of the structure of Figure 3-9 

3.4 Electromagnetic induction Law 
Flux linkage (flusso concatenato) definition 

 N  

Relationship between voltage and flux linkage Faraday/Lenz Law 
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"e" is called "induced voltage" or electromotive force (emf) (forza elettromotrice, fem) 

Inductance relationship 
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Inductance of a coil with ferromagnetic material 
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The inductance of the coil of Figure 3-12 has to be calculated by means of the following steps. 

The magnetic flux φ which is linked with the coil is given by 
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Figure 3-12: Inductance of a coil in a ferromagnetic structure with air-gap  

The flux linkage, linked with the coil is  N , so 
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If there are more than one coil, the flux linked with a coil is produced by all the magnetomotive 
force of each coil. If the system is linear, you can apply the superposition principle: the stimulus is 
each current, the effect is the flux linkage of one coil. The effect on the flux linkage ψk of the coil 
"k" of the current ik of the coil itself is represented by a constant coefficient Lkk, called self-
inductance (auto induttanza). The effect on the flux linkage ψk of the coil "k" of the current ij of the 
coil "j" different from "k" is represented by a constant coefficient Lkj, called mutual-inductance 
(mutua induttanza). 

In general term, 
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: if j=k the Lkj represents a self-inductance otherwise the mutual 

inductance between coil j and coil k. 

This means that the flux linked with the coil "k" in a ferromagnetic circuit with "n" coils is: 
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The effect of each magnetomotive force on the flux linkage may increase or decrease it. So you 
have to pay attention to the sign of each effect. 

The voltage induced in the coil "k" is the derivative of the flux linkage, so (consider a linear 
system): 
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A simple example is the circuit of Figure 3-13, with two coils. 
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Figure 3-13: Ferromagnetic structure with air-gap and two coils 

The magnetic flux due to the magnetomotive force M1, linked with the coil 2 is opposite to the 
magnetic flux due to the magnetomotive force M2, so the total flux linkage of coil 2 is given by the 
difference of the two effect: 
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3.5 Energy 
 

The energy is the integral of the instantaneous power. 

For an inductance the instant power is 
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The energy is: 
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For a two-coil mutual inductor we have that the total instantaneous power is the sum of the two 
powers. Consider the case in which the two effects are combined positively. 
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If the system is conservative, the energy is a state function and its value does not depend on the path 
you follow to reach the finale state of the system. 

Suppose you have to calculate the variation of energy stored in the magnetic circuit, from a state of 
the system in which both the currents are equal to zero to a state characterized by two currents i1=I1 
and i2=I2. Consider a path, varying i1 from 0 to I1 with i2=0 and a second step varying i2 from 0 to I2 
with i1=I1. 

During the first path, the variation of the energy is (i2=0): 
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During the second path, the variation of the energy is (i1=I1): 
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The total variation of the energy is 
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If you choose a different path (varying i2 from 0 to I2 with i1=0 and a second step varying i1 from 0 
to I1 with i2=I2) you have 
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But in a conservative system the energy does not depend on the path, so Wtot
I is equal to Wtot

II. A 
consequence is that the L12=L21. 

In general term: Lkj=Ljk. 

Call L12=L21=Lm. 

The expression of the stored energy in a mutual inductor is (the sign before the mutual inductance 
depends on the combination of the two effects): 
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For three coils (L12=L21, L13=L31, L32=L23): 
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and so on. 

3.6 Force 
From the first Law of Thermodynamics, you have (no heat exchange): 

me LLdW    

The meaning is: the variation of the energy stored in the device is the difference between the 
electrical work (incoming) and the mechanical work (outcoming). 



 

 

 

Figure 3-14: Relay  

Consider the structure of Figure 3-14, with only one electrical port. Usually the electrical and the 
mechanical works are inexact differentials, while energy is a state function (exact differential). But 
for an ideal inductor the electric power is  
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From the mechanical point of view 
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It means that the flux linkage ψ and the position x are the state variables and W=W(ψ,x). Then 
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It means that 
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In a linear system Li  (L is not a function of the current i, but of the only position x) and the 

energy stored in the magnetic circuit is 
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If μfe=∞ (→θfe=0), the inductance L is: 
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This is the total force, given by two forces in correspondence of the air-gap. The force for each air-
gap is: 
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The force is attractive (negative sign) and the pressure σ is 
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which represents, also, the energy per unit volume, stored in the air-gap (in the ferromagnetic 
material, due the infinite value of the permeability, there is no stored energy). 


