
 

1 

Summary 
 

2. SPACE PHASORS ...................................................................................................................... 1 

2.1 THE SPACE PHASORS AND THE ELECTROMAGNETIC JOINT .......................................................... 1 

  

 

2. Space phasors 

2.1 The space phasors and the electromagnetic joint 

Consider an isotropic rotating machine, with one rotor winding. 

 

Figure 2-1 Isotropic rotor powered machine – concentrated windings 

 

Figure 2-2 Isotropic rotor powered machine – distributed windings 

The current, flowing through the rotor winding, is related to a magnetomotive force (mmf) in the 

air gap, which maintains a magnetic field whose lines are shown in Figure 2-1 and Figure 2-2. 

The magnetic field is similar to that generated by a permanent magnet that has a North and South 

as in the figure. The situation along the magnetic air gap has an alternating pattern (see solid line 

in Figure 2-3 and Figure 2-4)  
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Figure 2-3 Qualitative trend of the magnetomotive force along the air gap – concentrated 

windings 

 

Figure 2-4 Qualitative trend of the magnetomotive force along the air gap – sinusoidally 

distributed windings 

If we consider only the first harmonic (dashed line in Figure 2-3 and Figure 2-4) and neglecting 

the highest harmonics, the situation in the air gap may be represented by a vector whose 

direction is along the North polar axis (Figure 2-5). 

 

Figure 2-5: Mmf representation by means of a space phasor 

The space phasor (whose amplitude is a function of time) allows knowing the value of the 

corresponding quantity at any location within the air-gap and at each instant. In fact, in order to 
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know the value of the amplitude at a given point of the air gap it is sufficient to project the 

phasor onto the required direction. It appears that )cos()(),(   tMtM  (Figure 2-6). 

 

Figure 2-6: Space phasor application 

All electrical quantities (voltages and currents) and magnetic quantities (mmf and fluxes) can be 

represented by space phasors, allowing for easy interpretation of electromagnetic phenomena. 

The number of turns N, by which the winding is carried out, acts like a transformer. At constant 

mmf and flux, a greater number of turns implies a lower current value but a higher value of the 

flux linkage and thus of the induced voltage. The value of the instantaneous electric power 

remains unchanged. 

The distribution of turns in the slots produces an effect (winding factor) that is easy to analyze. 

Each coil produces a field represented by a space phasor. The vector sum of these fields provides 

the resulting field (see Figure 2-7) 

 

Figure 2-7: Winding factor 

The use of space phasor allows for an evaluation of the electromechanical interactions. In fact, 

even in the presence of the stator winding, the rotor magnetic field will tend to align with the 

field of stator (both North poles tend to overlap). Otherwise, a torque will arise; its expression is: 

)sin( sre kT   (see Figure 2-8). 
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Figure 2-8: Electromagnetic joint 

The operating principle of a large part of electrical machines is based on this statement: the 

torque is different by zero if the rotor magnetic field is not aligned with the stator field. The 

maximum torque occurs when the fields are orthogonal. 

It is now clear that, in order to obtain a constant torque, it is necessary that the two fields remain 

displaced by a constant angle over time. This would only be possible if the rotor windings and 

stator have the same speed: in a DC machine this is allowed by the presence of a commutator; in 

other machines it would not be possible. However, the presence of more windings in the same 

structure (for example in the stator) provides new degrees of freedom. The magnetic field (stator) 

is obtained by superimposition of fields generated by the different windings. In the case, for 

example, of two windings displaced by 90 electrical degrees in space, using suitable values of 

the currents in the stator windings can force the value and location of the stator flux. In the case 

where the currents are sinusoidal and displaced each other by one fourth of period, the resulting 

field rotates at a constant speed and constant amplitude (despite being generated by fixed 

windings). 

The expression of the space phasor of the current as a function of the two currents ia and ib is the 

following: 

)( ba ijii   

Conversely, knowing the space phasor, the value of winding current can be calculated simply 

projecting the space phasor along the direction of the corresponding magnetic axis; for example: 

)(iRaia   

where Ra is defined as the projection of the phasor onto the magnetic axis of phase "a". 

The same effect can be achieved by using three windings, displaced by 120 electrical degrees in 

space, and three-phase currents, with a time displacement of one third of the period. 

It is easy to switch between the three-phase currents to the current space phasor. The formula is 

as follows: 
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On the other hand, it is possible to calculate, knowing the space phasor and assuming that the 

sum of the phase currents is zero, the value of a phase current using the formula: 
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iRaia   

Traditionally (for this course), however, the space phasor is defined as follows: 
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iRaia   

or better: )Re(
3

2
iia      )Re(

3

2 2

iib       )Re(
3

2
iic    

so as to maintain the same expressions of power and energy both in the phase quantities and in 

the space phasors (Re means "real part of"). 

The space phasor, like all vectors, is completely defined by two variables: the amplitude and the 

argument (or phase angle) or by its components with respect to two orthogonal axes (reference 

frame). 

 

Figure 2-9: Reference frame 

The axes of the reference frame are commonly marked with "d" and "q" (where d is the real axis, 

while q represents the imaginary axis). Given is as the phasor with respect to a reference frame 

"s", the corresponding phasor in a reference frame "t" displaced by an angle  with respect "s" is: 
jst eii   

The phasor is always the same, but it is "seen" from a different viewpoint. 

The operation of the derivative of a phasor leads to the following relationship: 
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